Ein operatorwertiger Hahn-Banach Satz

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hahn - Banach theorems

The first point here is that convex sets can be separated by linear functionals. Second, continuous linear functionals on subspaces of a locally convex topological vectorspace have continuous extensions to the whole space. Proofs are for real vectorspaces. The complex versions are corollaries. A crucial corollary is that on locally convex topological vectorspaces continuous linear functionals s...

متن کامل

Generic Hahn–Banach results

Given f : X → R ∪ {+∞} a convex and lower semi-continuous function defined on a reflexive Banach space X, and L, a closed linear manifold of X over which f takes at least a real value, the aim of this note is to prove the following Baire category result: in the Euclidean setting, the set of affine functions dominated by f on L for which there is no dominated extension to X is always of first Ba...

متن کامل

Hahn-banach Theorem

We prove a version of Hahn-Banach Theorem. and 1] provide the notation and terminology for this paper. The following propositions are true: (1) For all sets x, y and for every function f such that h hx; yi i 2 f holds y 2 rng f: (2) For every set X and for all functions f, g such that X dom f and f g holds fX = gX: (3) For every non empty set A and for every set b such that A 6 = fbg there exis...

متن کامل

The Noncommutative Hahn-banach Theorems

The Hahn-Banach theorem in its simplest form asserts that a bounded linear functional defined on a subspace of a Banach space can be extended to a linear functional defined everywhere, without increasing its norm. There is an order-theoretic version of this extension theorem (Theorem 0.1 below) that is often more useful in context. The purpose of these lecture notes is to discuss the noncommuta...

متن کامل

Hahn - Banach Theorem Bogdan Nowak

(2)1 For every set X and for all functions f , g such that X ⊆ dom f and f ⊆ g holds f X = g X . (3) For every non empty set A and for every set b such that A 6= {b} there exists an element a of A such that a 6= b. (4) For all sets X , Y holds every non empty subset of X→̇Y is a non empty functional set. (5) Let B be a non empty functional set and f be a function. Suppose f = ⋃ B. Then dom f = ⋃...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 1981

ISSN: 0022-1236

DOI: 10.1016/0022-1236(81)90064-1